Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 51(1): 167-178, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37909833

RESUMO

BACKGROUND: Accurate 3D semantic segmentation models are essential for many clinical applications. To train a model for 3D segmentation, voxel-level annotation is necessary, which is expensive to obtain due to laborious work and privacy protection. To accurately annotate 3D medical data, such as MRI, a common practice is to annotate the volumetric data in a slice-by-slice contouring way along principal axes. PURPOSE: In order to reduce the annotation effort in slices, weakly supervised learning with a bounding box (Bbox) was proposed to leverage the discriminating information via a tightness prior assumption. Nevertheless, this method requests accurate and tight Bboxes, which will significantly drop the performance when tightness is not held, that is when a relaxed Bbox is applied. Therefore, there is a need to train a stable model based on relaxed Bbox annotation. METHODS: This paper presents a mixed-supervised training strategy to reduce the annotation effort for 3D segmentation tasks. In the proposed approach, a fully annotated contour is only required for a single slice of the volume. In contrast, the rest of the slices with targets are annotated with relaxed Bboxes. This mixed-supervised method adopts fully supervised learning, relaxed Bbox prior, and contrastive learning during the training, which ensures the network exploits the discriminative information of the training volumes properly. The proposed method was evaluated on two public 3D medical imaging datasets (MRI prostate dataset and Vestibular Schwannoma [VS] dataset). RESULTS: The proposed method obtained a high segmentation Dice score of 85.3% on an MRI prostate dataset and 83.3% on a VS dataset with relaxed Bbox annotation, which are close to a fully supervised model. Moreover, with the same relaxed Bbox annotations, the proposed method outperforms the state-of-the-art methods. More importantly, the model performance is stable when the accuracy of Bbox annotation varies. CONCLUSIONS: The presented study proposes a method based on a mixed-supervised learning method in 3D medical imaging. The benefit will be stable segmentation of the target in 3D images with low accurate annotation requirement, which leads to easier model training on large-scale datasets.


Assuntos
Imageamento Tridimensional , Neuroma Acústico , Masculino , Humanos , Pelve , Próstata , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina Supervisionado
2.
Neurocomputing (Amst) ; 485: 36-46, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35185296

RESUMO

The front-line imaging modalities computed tomography (CT) and X-ray play important roles for triaging COVID patients. Thoracic CT has been accepted to have higher sensitivity than a chest X-ray for COVID diagnosis. Considering the limited access to resources (both hardware and trained personnel) and issues related to decontamination, CT may not be ideal for triaging suspected subjects. Artificial intelligence (AI) assisted X-ray based application for triaging and monitoring require experienced radiologists to identify COVID patients in a timely manner with the additional ability to delineate and quantify the disease region is seen as a promising solution for widespread clinical use. Our proposed solution differs from existing solutions presented by industry and academic communities. We demonstrate a functional AI model to triage by classifying and segmenting a single chest X-ray image, while the AI model is trained using both X-ray and CT data. We report on how such a multi-modal training process improves the solution compared to single modality (X-ray only) training. The multi-modal solution increases the AUC (area under the receiver operating characteristic curve) from 0.89 to 0.93 for a binary classification between COVID-19 and non-COVID-19 cases. It also positively impacts the Dice coefficient (0.59 to 0.62) for localizing the COVID-19 pathology. To compare the performance of experienced readers to the AI model, a reader study is also conducted. The AI model showed good consistency with respect to radiologists. The DICE score between two radiologists on the COVID group was 0.53 while the AI had a DICE value of 0.52 and 0.55 when compared to the segmentation done by the two radiologists separately. From a classification perspective, the AUCs of two readers was 0.87 and 0.81 while the AUC of the AI is 0.93 based on the reader study dataset. We also conducted a generalization study by comparing our method to the-state-art methods on independent datasets. The results show better performance from the proposed method. Leveraging multi-modal information for the development benefits the single-modal inferencing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...